Collatz Conjecture in C

AHMHTPIO2Z AAEZANAPH2




CODING PROGRESSION

WEEK 1 WEEK 3
Caching + Modulo 4 Relative counters

STARTING
CODE

FINAL
VERSION

WEEK 2 WEEK 4

Modulo 9 tricks Time space
trade-off



_... counter = 0; . ? 9

while (n > 1) {

xa o STARTING CODE
} else {

n = 3%n+1;

The basic implementation of the assignment

counter++; regarding the Collatz conjecture in C.

}

~eturn counter:




i

sunter = 0;

dle (n > 1) {

if (cache[n] = 0) {
counter += cache[n];

break;

}

if (n% 2 ==0) {
n =n/2;

} else {
n = 3*n+l;

}

counter++;

‘vn counter;

CACHING

Implementing caching (memoization) on the code to
speed up performance and lower the number of

calculations




uinted_t q;

if (n % 4 == 1) { t
q = buffer[(3*n+1)/2] // 3 steps
if (q '= @) { counter = q + 3} // + 3 ~" MODULO 4 .'I

}

else if (n % 4 == 3)
{/*basic algorithm*/}

Implementing mod 4 tricks to speed up peformance
else // n%4 == 2 n%4 == © and skip calculations from heavy loops.
2] — 3 (s —

{
q = buffer[(n/2)];

if (gq!=0) { counter = q + 1 }




register Int j = 0;

for(register Int 1 =
/*
/*
/*
/*
/*
/*
/*
/*
/*

3

00 B ® U1 B O N

/
/
/
/
/
/
/
/
“/

entries[j++]
entries[j++]
entries[j++]
entries[j++]
entries[j++]
entries[j++]
entries[j++]
entries[j++]
entries[j++]

3; 1 <= end; 1 += 36) {

iterate from(i+ @, scores+(i+ 9));
iterate from(i+ 4, scores+(i+ 4));
(scores[i+ 8] = -2, i/3*2+45); //mod(9) ==
iterate from(i+12, scores+(i+12));
iterate from(i+l6, scores+(i+16));
(scores[i+20] = -2, i/3*2413); //mod(9) =
iterate from(i+24, scores+(i+24));
(scores[i+28] = -5, ((i+24)/9)*8+3); //mod(9) == 4
(scores[1+32] = -2, i/3*2+421); //mod(9) ==

=

MODULO 9 .llt

Implementing mod 9 tricks to speed up peformance
and skip calculations from heavy loops.

ericr.nl




register Int j = 0;
for(register Int i = 3; i <= end; 1 += 36) {

‘ : iterate from(i+ @, scores+(i+ 0));
iterate _from(i+ 4, scores+(i+ 4));

X ¢

T T T T T T T T

3

00 A ® Ul B O NS

T T T T T T T T

*/

entries[j++]
entries[j++]
entries[j++]
entries[j++]
entries[j++]
entries[j++]
entries[j++]
entries[j++]
entries[j++]

(scores[i+ 8]

-2, i/3*2+5); //mod(9) == 2

iterate from(i+12, scores+(i+12));
iterate_from(i+16, scores+(i+16));

(scores[i+20] = -2, i/3*2+13); //mod(9) =

5

iterate from(i+24, scores+(i+24));

(scores[i+28]
(scores[1i+32]

-5, ((1+24)/9)*8+3); //mod(9) == 4
-2, i/3*2+21); //mod(9) ==

RELATIVE t
COUNTERS «ff

Using relative counters to lower memory usage for L1
cache and speed up CPU Computations.

For example:

for n=3

3,10,5,16,8, 4,2

We would store in scores|[3] the cost relative to 2 (store 6)




static const Int __k = 5;
static const Tiny _c[32] ={ e, 3, 2, 2, 2, 2, 2, 4, 1, 4, 1, 3, 2, 2, 3, 4, 1,
static const Tiny _d[32] ={ e, 2, 1, 1, 2, 2, 2, 20, 1, 26, 1, 10, 4, 4, 13, 4

I'ME SPACE
#pragma GCC optimize 3
static Int iterate from(const Int i, Score* restrict count_to ref) { I RADE_OFF

register Int count = 0; —

BigInt cursor = i; // Use extra var on 64 bits, because those ones go crazy
do {

Int b = cursor % 32;

Int number_of odd = _c[b];

Using a method called "time space trade-off" to use
precomputation of a small array of numbers calculate
bigger numbers faster.

cursor = pow3(number of odd) * (cursor / 32) + d[b];
count += (__k - number_of_odd) + 2*number_of_odd;

} while(cursor >= i);

*count_to_ref = (Score) count;

return cursor;




#pragma GCC optimize 3
static Int 1terate from(:

register unsigned int j = 0;

restrict count to ref) {

EXTRAS ++:

Using #pragma GCC optimize 3, hints the compiler to use
specific optimization tricks that will speed up the code.
Avoiding the need for the use of assembly.

Register to make the variable faster to access.

Restrict to tell the compiler that the memory address is
going to be accessed only by that pointer.




SOURCES ++;

Time—space tradeoff

The section As a pa juence above gives a way to speed up simulation of the sequence. To jump ahead k steps on each iteration (using the f
® ® ® function from that section), break up the current number into two parts, b (the k least significant bits, interpreted as an integer), and a (the rest of the

I I e I a bits as an integer). The result of jumping ahead kis given by
fF@ta+b)=3°C-Ba+dp, k).

The values of ¢ (or better 3°) and d can be precalculated for all possible k-bit numbers b, where d(b, k) is the result of applying the f function k times to
b, and e(b, k) is the number of odd numbers encountered on the way [2Y! For example, if k=5, one can jump ahead 5 steps on each iteration by
separating out the 5 least significant bits of a number and using

cf0.31,50)={0,3.2,2,2,2,2,4,1,4,1,3,2,2, 3, 41,23, 31,
5

3,3, 2

L2,20,1,26,1,10, 4, 4,13, 40,2, 517,17, 2, 2, ;

Ericr.nl Modulo tricks




